An energy preserving finite difference scheme for the Poisson–Nernst–Planck system
نویسندگان
چکیده
منابع مشابه
An energy-stable finite-difference scheme for the binary fluid-surfactant system
Article history: Received 18 September 2013 Received in revised form 26 March 2014 Accepted 29 March 2014 Available online 4 April 2014
متن کاملAn implicit finite difference scheme for analyzing the effect of body acceleration on pulsatile blood flow through a stenosed artery
With an aim to investigate the effect of externally imposed body acceleration on two dimensional,pulsatile blood flow through a stenosed artery is under consideration in this article. The blood flow has been assumed to be non-linear, incompressible and fully developed. The artery is assumed to be an elastic cylindrical tube and the geometry of the stenosis considered as time dependent, and a co...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملAn Energy Conserving Finite Difference Scheme for the Simulation of Collisions in Snare Drums
In this paper, a physics-based model for a snare drum will be discussed, along with its finite difference simulation. The interactions between a mallet and the membrane and between the snares and the membrane will be described as perfectly elastic collisions. A novel numerical scheme for the implementation of collisions will be presented, which allows a complete energy analysis for the whole sy...
متن کاملAn Explicit Finite Difference Scheme for the Camassa-holm Equation
We put forward and analyze an explicit finite difference scheme for the Camassa-Holm shallow water equation that can handle general H1 initial data and thus peakon-antipeakon interactions. Assuming a specified condition restricting the time step in terms of the spatial discretization parameter, we prove that the difference scheme converges strongly in H1 towards a dissipative weak solution of C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Computation
سال: 2016
ISSN: 0096-3003
DOI: 10.1016/j.amc.2016.05.007